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L IJ"TRODUCTIO\l

Let X be a normed linear space. Given a closed and bounded subset
F( # 0) of X, let rtF, X) == sup {II x -:: ::: E F} denote the radius of the
smallest closed ball centered at x, covering F For a nonempty subset A of
X. let

rad(F; A) == inf[ r(F, x): ,Y E A]

denote the Chehyshct; radius of F in A. Any point x E A for which r( F, x) =

rad(F; A) is called a relative Chehyshev center of F in A, and the (possibly
void) set of relative Chebyshev centers of F in A is denoted by Cent( F; A).
In terms of applications, we may view F as some data set, and elements of
Cent(F; A) as best representing the data set in A. In the sequel we shall
refer to F as the data set. and to A as the constraint su.

The study of relative Chebyshev centers (also called hest simultaneous
approximations), initiated by A. L. Garkavi [22] almost 25 years ago, has
drawn more attention during thc last decade. Questions concerning the
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existence, uniqueness, and stability of relative centers have been explored
by several authors (cf., e.g., [1,2,3,23,24,28,29,36]). For a recent survey
of results in this direction, the reader may consult [4] (cf. also the
expository article [21]).

Continuity properties of the set-valued mapping F -> Cent(F; A), where
the closed and bounded subsets of X are equipped with the usual Hausdorff
metric topology, have also been well-studied [11,30,34,35]. Here we look
at the relative center mapping as a bivariate set-valued function, where the
constraint variable ranges over convex sets, appropriately topologized.
Although the full strength of the Hausdorff metric topology on the data set
coordinate space is required to obtain results, a much weaker topology
suffices for the constraint set coordinate space. The correct path to follow
is indicated by recent research on metric projections as bivariate functions,
or at least as functions of the set variable, and Mosco convergence [5,
9, 37, 38]; the metric projection map is a particular case of the relative
center map, where the data set is a singleton. Although our more general
results assert only weak upper semicontinuity, when either X is finite
dimensional and rotund, or both X and X* have Frechet differentiable
norms except at the origin, then the convergence of a net <A;) to A in a
topology compatible with Mosco convergence is actually equivalent to the
norm convergence of the net <Cent(A;; F) to <Cent(A; F) for each
closed and bounded set F admitting farthest points. In the case X is a
separable reflexive space, we also obtain a subtle, rather surprising, generic
theorem on points of single valuedness of the restricted center map.
Finally, we investigate the weakest topology on convex sets such that
A -> rad(F; A) is continuous for each closed and bounded set F.

2. NOTATION AND TERMINOLOGY

In the sequel, X will be a normed linear space and X* will denote its
normed dual. The origin and closed unit ball of X (resp. X*) will be
denoted by (] and U (resp. (]* and U*). Also, S (resp. S*) will denote the
unit sphere (norm one elements) of X (resp. X*). If a net <x;) converges
weakly (resp. weak *) to x, then we write x = w-lim;x; (resp. x = w*-lim; x;).
Norm convergence will be simply denoted by x = lim; x;..

We distinguish the following classes of normed spaces:

(Rf) == the reflexive Banach spaces,

(R) == the rotund (strictly convex) normed spaces,

(R*) == the normed spaces whose duals are in (R),

(H) == the normed spaces for which weak convergence of a net in S to
a point of S implies norm convergence,
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(H*) == the normed spaces for which weak* convergence of a net in S*
to a point of S* implies norm convergence,

(F) == the normed spaces whose norms are Frechet differentiable
except at the origin,

(F*) == the normed spaces whose dual norms are Frechet differentiable
except at the origin.

Ordinarily, the definitions of the classes (H) and (H *) are given in terms
of limits of sequences rather than nets (cf. [25,37]). However, there seems
to be little loss of generality in our more restrictive definition, for the most
important spaces in (H) or (H * ) in the usual sense satisfy the more restric­
tive definition as well. Besides, we need the full strength of our definition
to deal with net arguments which arise in the consideration of certain
topologies on sets of convex subsets that fail to be first countable. It is well­
known ([39], or [25, pp.147-149]) that XE(Rnn(R)n(H) if and only
if X E (F* ), so that

(F) n (F*) = (Rf) n (R) n (H) n (R*) n (H*).

Apparently, the class (Rf) n (R) n (H) was introduced for the first time by
Fan and Glicksberg [18].

We also distinguish the following classes of subsets of X as well:

CL(X) = the nonempty closed subsets of X,

CB(X) = the nonempty closed and bounded subsets of X,

CC(X) = the nonempty closed and convex subsets of X,

C*C(X*) = the nonempty weak *-closed and convex subsets of X*.

Recall that the Hausdorff distance H between nonempty closed subsets A
and B of X is defined by the formula

H(A, B) = inf{a: A +aU~ Band B+ aU~ A}.

Hausdorff distance so defined yields an infinite valued metric on CL(X),
which is complete when X is complete [26, p. 44]. Restricted to CB(X), a
closed subset of CL(X) [26, p.45], it defines a complete finite valued
metric, when X is complete. We will denote the topology of Hausdorff
distance by T H'

We now turn to Mosco convergence (due to Mosco [31]), which has
become the convergence notion of choice for convex analysts working in
reflexive spaces, in view of its stability with respect to duality [6, 10, 32].
A sequence <All) in CC(X) where X is a reflexive space is declared Mosco
convergent to a convex set A in CC(X) provided



ISO BEER A'\iJ) PAl

(i) at each ([ in A, there exists a sequence «(I,,) strongly convergent
to a such that for each /I, ([" E Ali' and

(ii) whenever (lI(k) is an increasing sequence of posItive integers
and ([,,(I, I E A ,for each k, then the weak con vergence of "([,,,I, I) tu ,v EX
implies ,v E A

Evidently. Mosco convergence IS much weaker than Hausdorff mctric
convergence. for the sequence of lines : (v, r): r = ,\,/1: is Mosco
convergent to the line r = O. The basic source of information on Mosco
convergence of sequences of sets remains the comprehensive thesis of
Sonntag [37 I.

In [9]. a "hit-and-miss" (Vietoris-type) topology TV! compatible WIth
Mosco con vergence of seq uences was in trod uced. called the :'v!osco

{ofi%gr therein (for a more analytical approach to topologizing Mosco
convergence, consult [6J). In terms of the standard plus and minus
notation for hyperspaces. the Mosco topology TV! is generated by all sets
of the form

v ==:AECC(X):A 1'*0:
(K' ) • == : A E CC( X): A n K = 0 :.

where V is a norm open of X and K is a weakly compact subset of X. The
topology may be described as a weak topology as follows: it is the weakest
topology on CC(X) such that for each fixed weakly compact set K, the
gap fimctiona/ A --> inf { II a - k II : a E: A and k E K} is continuous on CC( X)
[9, Theorem 3.3]. In particular, if a net (A;) in CC(X) is TM-convergent
to A, then (eI(·, AJ) must converge pointwise to eI(·, A). In the literature,
pointwise convergence of distance functions is often called Wijsman
convergence [40]. In a reflexive space, the topology of Wijsman
convergence for closed convex sets, i.e., the weakest topology on CC(X) for
which the functionals A --> eI(.':, A) are each continuous, may also be
described as a "hit-and-miss" topology (see [9, Theorem 3.5J and Section 5
below).

With respect to topological properties and metrizability, the Mosco
topology in a reflexive space is always Hausdorff and completely regular
[9, Theorem 3.4J, and it is first countable if and only if X is separable.
Moreover, if X is separable then (CC(X), T M >is actually separable and
completely metrizable [9, Section 4]. Its stability with respect to duality is
expressed in terms of the continuity of the polar map, or in terms of the
continuity of the Young~Fenchel transform for proper lower semi­
continuous convex functions, identified with their epigraphs [10].

In this article, we call set-valued functions multifunctions. By a mu/ti­
fimction r from a topological space T to a topological space Y, we mean
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a function from T to CL( Y). A multifunction J is said to be /lppcr ICilll­

continuous (abbreviated usc) [26] if for each open subset V of L the set
: t E T: /(t) c ~/: is open in T. Equivalently, J is usc if for each closed
subset E of Y. the set

is closed in T If. in addition. the values of J are compact subsets of L /
is called an usco l/1ap [14]. If X (resp. X *) is a normed space (resp. a dual
normed space) equipped with the weak topology (resp. weak * topology),
then we employ the terms lv-use, ll'-USCO (resp. ll'*-USC. \l'*-usco). for usc
and usco maps into X so topologized. In particular, if X is a reflexive
Banach space. the I/1ctric projection multifunction from X x eC( X) to X.
defined by

(x, A) --+ : a E A: Ia - xi = d(x. A):

is IV-USCO, if we equip X with the norm topology and CC(X) with the
Mosco topology [9, Theorem 5. J]. As one main result, we present an
analagous theorem for the relative center map-valid in dual.lpaccs-that
completely subsumes the above metric projection continuity result. This
requires a generalization of the Mosco topology to dual spaces, to be
undertaken in Section 3.

In the sequel we shall need to consider a certain multifunction J from X
to X*, defined by

J(x)= {yEX*: <x.y) = Ilxf= II .I' :OJ.

This mapping has nonempty Iv*-compact convex subsets of X* as values,
and is usually called the duality l/1apping [13, J5, 27, 37]. If X E (R*), or,
more generally, if X is smooth [25, p. 106]. then J is single valued and
norm w* continuous. If. in addition, X is also in (H *), then J is
norm-norm continuous. If XE(Rj') and XE(R*), then J is surjective, and
if, in addition, X E (R), then J is also injective. Thus, if X E (F) n (F*), then
.! 1 exists and both J and.! 1 are norm norm continuous.

3. UPPER SEMICOl\;TINUITY OF THE RELATIVE CENTER MAPPING

In this section, we establish basic upper semicontinuity properties of the
relative center mapping as a bivariate multifunction. Not unexpectedly, our
efforts will require continuity results for the radius function (F, A) --+

rad(F; A). First, however, we find it convenient to recall some of the
known results on the upper semicontinuity of F --+ Cent(F; A). Our first
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lemma is simple yet fundamental in all that follows. The proof is left to the
reader.

LEMMA 3.1. Let X he a normed linear space, and let [F, C} c CB( X).
For each x and:: in X, we haue

Ir(F, xl-rtF, ::)I:s Ilx-d and IrtF, x) - r(C, x)l:s H(F, C).

Moreouer, if A is any nonempty suhset of X, then

Irad(F; A) - rad(C; A)I :S H(F, C).

As an immediate consequence of Lemma 3.1, the functional x ~ rtF, x) is
norm continuous on X, and the functionals F ~ rtF; x) and F ~ rad(F; A)
on (CB(X), TH) are continuous.

DEFINITION. A subset A of X (resp. X*) is said to be cent-compact
(resp. w*-cent compact) for CB(X) (resp. CB(X*)) if for each FE CB(X)
(resp. CB(X*)), each net (x;) in A satisfying rad(F; A)=lim; rtF, x;) has
a convergent (resp. w*-convergent) subnet to a point of A.

PROPOSITION 3.2. If A is cent-compact (resp. w*-cent-compact) for
CB(X) (resp. CB(X*)), then fc)r each F in CB(X) (resp. in CB(X*)),
Cent(F; A) is nonempty, and the relative center map F ~ Cent(F; A) is usco
(resp. w*-usco) on CB(X) (resp. CB(X*)), equipped with T H .-

Proof Let Fbe in CB(X) (resp. in CB(X*)), and let A be cent-compact
(resp. w*-cent-compact). The proof of nonemptiness for Cent(F; A) follows
from the well-known existence principle of Garkavi [22] (cf. also [2,
Proposition A]). Evidently, since A is cent-compact (resp. w*-cent­
compact), Cent(F; A) is compact (resp. w*-compact). It remains therefore
to prove that F ~ Cent(F; A) is usc (resp. w*-usc). For this, we must show

Cent I(E) == [FE CB(X) (resp. CB(X*)): Cent(F; A) n E# 0}

is Twclosed for each fixed closed (resp. w*-closed) subset E of X (resp.
X*). Let (F;) be a net in Cent '(E) such that F= Twlim F;. It suffices
to prove that FECent-1(E). For each l choose a;ECent(F;;A)nE. By
definition, rtF;, a;) = rad(F;; A); so, by Lemma 3.1,

Irad(F; A) - rtF, a;)1 :S Irad(F; A) - rad(F;; A)I + Ir(F;, a;) - r(F, a;)1

:S 2· H(F, F;).

As a result, r(F, a;l ~ rad(F; A). Since A is cent-compact (resp. w*-cent­
compact), (a;) has a convergent (resp. a w*-convergent) subnet (a,,)
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convergent (resp. w*-convergent) to a point aoE A n E. Now a -~ r(F, a) is
norm continuous if A c X, and if A c X*, then it is weak*-Iower semi­
continuous by the weak *-Iower semicontinuity of the dual norm. In either
case, we have

r(F, ao) ~ lim infl' r(F, a,,) = rad(F; A).

Thus, aoECent(F;A)n£ so that FE Cent 1(£). We conclude that
Cent 1(£) is Twclosed. I

The preceding proposition contains these well-known [4 J special cases:
The relative center map F ---> Cent(F; A) is

(I) usco if A is closed and X is finite dimensional (or more generally,
boundedly compact);

(2) w-usco if A is a w-closed subset of a reflexive Banach space X;

(3) w*-usco if A is a w*-closed subset of the dual x* of a normed
space X.

We now explore the upper semicontinuity of the relative center-map
regarded as a multifunction of both the arguments F and A. Although we
could develop our theory in reflexive spaces using the Mosco topology on
the constraint set coordinate space, it is no harder to work in the more
general setting of a dual normed space X*, provided we modify the Mosco
topology appropriately.

DEFINITION. Let X* be a dual normed space. The dual Mosco topology
TM* on the weak* closed convex subsets C*C(X*) of X* is generated by
all sets of the form

v =={AEC*C(X*):AnV#0}

(K') + == {A E C*C(X*): A n K = 0},

where V is a norm open subset of X* and K is w*-compact subset of X*.

Since a reflexive space X can be regarded as the dual of X*, and since
X is reflexive if and only if X* is reflexive, the weak and weak * topologies
on X coincide, provided X is reflexive. In view of this, for reflexive X, the
two topologies TM and TM * coincide on CC(X). It is easy to see that many
of the basic facts about <CC( X), TM) for reflexive spaces established in
[9J, e.g., Theorems 3.3-3.5, remain valid for <C*C(X*), TM *) for X an
arbitrary normed space, with the obvious modifications.

LEMMA 3.3. Let X* he a dual normed space, and let FE CB(X*) be
fixed. Then the radius functional A ---> rad(F; A) on C*C( X*) equipped with
T M * is continuous.
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AIIEC*C(X*), and pick up a"ECentlF:.l,,1 iwhich IS

Proposition 3.2). Then : l' E .Y*: I y U() i:: is a r \{'-­

01'.1". Suppose Ae:rEX*: I aol<l:: : then there is
(ill <: I:. By Lemma 3.1 we have

radt F: ,/).s; f( F. (/) rt F. a,,)1 1 =c radt 1': .1 0 J +1

which proves that .1-, radiI': A I is upper sellJleontinuous at .1 = A".
Lower semieontinuity of the functional holds trivially if rad(F: Aul
rad(F: X* I. Otherwise, let fl be an arbitrary number with radiF; )(*) <: fl <

rad(F:A u ). Consider the weak*-eompact set K it jr+fIC* Since
fl>radlF: X*). the sct K is nonempty. and since fl<radiF; Ao), K and 1"
are disjoint. Furthermore. if A E (K'I I. then rad( F; A) > fi. This proves
T'd,-lower semieontinuity of A -+ rad(F: .1) at Ac= Ali' I

Letting I' run over the singleton subsets of X*, It follows immediately
from Lemma J3 that the T\I*-eonvergenee of a net (.1, > in C*CLY*) to
AeC*C(X*) entails the pointwise convergence of (d(-, A,) to dt·.A)
(see [9, Theorem 3.5]).

LE\IMA 3.4. LeI X * he a dua/ Ilorilled space. Lei CH( X *) he equipped
)I"ilh Ihe lopo!ogr T" alld C*C(X*) he equipped \I"ilh Ihe top%gy T1\-1*- Theil
Ihef/mcliolla! (F A)-->rad(F:A) Oil CH(){*)xC*C(X*) is cOlllilluous.

Proof· Consider a net (iF" A;)" I in (C8(.Y*), Til> x (C*C(X*),
T 1\-1*) convergent to (F, A). Again applying Lemma 3.1, we have

I rad (F, ; A;) - rad (F; A )I

.s; i rad (F, ; A;) - rad (F: A;) I + I rad (F; AJ - rad (F; A )I

.s; H( F" F) + I rad( F; A,)"' rad( F: A) I

and continuity follows from Lemma 3.3, I

LEMMA 3,5. Lei X * he a dual Ilormed space, Lei (A;) H I he a 111'1 ill
C*C(X*) wilh A = T1\-1.-lim A;. Supposej(}/' each index J., a; E A" and (a;)
is evenluallv norm hounded, Then A conlains each W*-c/usler poinl of (a,).

Proot: Let:: be an arbitrary w*-cluster point of (a;). By assumption,
for some flEA and (1.>0, we have {a;:),?fl}c:xU*. Suppose that ::~A.

By the separation theorem [17, p, 417], there exists X o E X and f3 E R with
sup {(xo, a) : a EA} < f3 < (xo, ::). Consider this w*-compact set:

K=.:xU*n {I'EX*: (xo,r)?f]:.
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Since ~.\·E)(*: (xu,r)?/ii is a ll*-neighborhood of::, the choice of l.

ensures that K meets (A;) frequently, whereas K n A = 0. This violates
A = T;\1*-lim A,. and we conclude that:: E A must hold. I

We now come to one of our main results.

THEOREM 3.6. Let X * he a dual Ilormed space. Theil the relatirc cmler

!I1ap Cent: <CB(X*), Til) x <C*C(X*), T:\1*) -> C*C(X*) is \r*-usco.

Prout: Obviously, the values of the relative center map are ll'*-compact
convex sets. To prove that Cent is \I'*-usc- it suffices to show th;.lt

Cent I(E)= :(FA)ECB()(*):<C*C(X*):Cent(F;AinEIc

is closed in <CB(X*), Tf!) X (C*CIX*), TM*) for any \r*-c1osed subset E
of X*. To this end, let «(F,. A,J, I be a net in Cent 1(£) convergent
to (F. A). This means that F = Twlim F, and A = T M*-lim A,. Since
Cent( F,: A, ) n £ # 0. we can choose for each index i a point (/,
in Cent(F;:A;)nE. Now for all i sufficiently large, H(F"F)<L
and by Lemma3.4. Irad(F,:AJ-rad(F:A)I<L As a result, with
l.1 = rad(F,: A;) andl. = rad(F: A). we have for all i. sufficiently large,

Cent(F"A;)=A,nn (y+l.,U*:yEF,; cU [r+l.,U*:l'EF/ :

cF+(l.+2)U*.

Since Fis bounded, it follows that for some p E ,1, (a,: i.? {I; is bounded,
By weak*-compactness of closed balls in X*, we may assume by passing to
a subnet that (a;) weak*-converges to some ::E E. Clearly, :: must lie in
A. by virtue of Lemma 3.5. We now claim that:: E Cent( F: A I.

Let I: > 0 be arbitrary, and fix rEF with II:: - y II > r( F, ::) - I:. By the
weak *-lower semicontinuity of the norm in X* and by Lemma 3.4, we have
for all sufficiently large i., (i) a, - y II > :: -.1' II - I:: (ii) H( F

1
, F) < r:

(iii) Irad(F;;A;)-rad(F:A)1 <I;, For all such i. we obtain

r(F..::) < Ii.:: -.d + I::S; II a; -.d + 2r:s; r(F, a;) + 2r

:s; r(F1 , aJ + 3r = rad(F;: A;) + 31: < rad(F; A) + 4r.

Since c: was arbitrary, this proves r(F, ::):s; rad(F: A), so that:: E Cent(F; A).
We conclude that (I', A) E Cent I( E), completing the proof that the
relative center map is \I'*-usco. I

COROLLARY 3.7. Let X he a reflexive Banach space. It CC(X) is
equipped with the Mosco topology T M and CB(X) is equipped with the
Hausdorff' metric topology induced hy the norm ot X, then Cent:
CB(X) x CC(X) -> CC(X) is weakly usco.
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If F is a singleton set {x}, then Cent(F; A) = P(x, A), the metric projec­
tion of x onto A. Therefore, Corollary 3.7 includes [9, Theorem 5.1] as a
special case. We mention that upper semicontinuity of the metric projection
as a function of the set argument alone, topologized by Hausdorff distance,
was considered apparently for the first time in [12].

For the remaining part of this section, we denote by remote(X) the
collection of nonempty closed bounded subsets of X admitting farthest
points. Nonempty compact sets and, more generally, nonempty M-compact
sets [33], i.e., sets for which maximizing sequences admit convergent sub­
sequences, are members of remote(X). The next theorem gives conditions
for the relative center map to be (norm) usco.

THEOREM 3.8. Suppose X EO (H*). If C*C(X*) is equipped with the dual
Mosco topology TM* and remote(X*) is equipped with the Hausdorff metric
topology T H induced by the norm of X*, then Cent: remote(X*) x
C*C(X*) ---+ C*C(X*) is usco.

Prool For (norm) upper semicontinuity, we proceed exactly as in the
proof of Theorem 3.6 to prove that Cent '(E) = {(F, A) EO remote(X*) x
C*C(X*): Cent(F; A) n E #- 0} is closed for each norm closed subset E of
X*. We take a net «(F;, A;);E1 in Cent I(E) convergent to (F, A) and
for each index ;., choose a point a; in Cent(F;; A;) n E. Exactli:. as in the
proof of Theorem 3.6, we may assume, by passing to a subnet if required,
that (a;) w*-converges to a point z, and that, necessarily, z EO Cent(F; A).
Since F EO remote( X*), there is a poin t yEO F such that II z ~ y 11 = r( F, z) =
rad(F; A). Exactly as in the proof of Theorem 3.6, we have for all i.
sufficiently large,

II z ~ y 11 < 11 a; - y II + f;:(; r(F, aJ + t::(; r(F;, a;) + 21:

< rad(F; A) + 3£ = II z - y 11 + 3<:.

Therefore, II a; ~ y II ---+ II z - .vII. Also, since (a; ~ y) w*-converges to z ~ y
and X EO (H*), (a;) converges to z in the norm topology. Since E is norm
closed, we have zEOCent(F; A)nE so that (F, A) E Cent '(E).

Norm compactness of Cent(F; A) for each FEOremote(X*) and each
A EO C*C(X*) follows from its w*-compactness, using an almost identical
argument as the one just given. The details are left to the reader. I

COROLLARY 3.9. Suppose X EO (Rf) n (H). If CC(X) is equipped with the
Mosco topology T M and remote(X) is equipped with the Hausdorff metric
topology TH' then Cent: remote(X) x CC(X) ---+ CC(X) is usco.

From [I, Lemma 1.2] it follows that if X EO (R*), then for each
A EO C*C(X*) and each F EO remote( X*), the relative center Cent( F; A) is a
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singleton. In this case, Cent can be regarded as a mapping of remote(X*) x
C*C(X*) into X*. In this context, Theorem 3.8 and Corollary 3.9 may be
restated as follows:

COROLLARY 3.10. Suppose XE(R*)n(H*). If C*C(X*) is equipped
with the topology TM' and remote(X*) is equipped with the topology TH , then
Cent: remote( X*) x C* C( X*) ---+ X* is single valued and continuous.

COROLLARY 3.11. Suppose XE(Rf)n(R)n(H). IfCC(X) is equipped
with the topology T M and remote(X) is equipped with the topology T H , then
Cent: remote(X) x CC(X) ---+ X is single valued and continuous.

THEOREM 3.12. Suppose XE(R*)n(H*). Consider the following five

statements for a net <A;);EA in C*C(X*):

(1) A = TM,-lim A;;

(2) lim; Cent(F; A;) = Cent(F; A ),,(or every FE remote(X*);

(3) lim; rad(F; AJ = rad(F; A ),,(or every FEremote(X*);

(4) lim; dry, AJ = d(y, A), for every y E X*;

(5) lim; Ply, AJ = Ply, A ),,(or even' y E X*.

We have (1)=(2)=(3)=(4). Moreover, if in addition, we assume either
( * ): X is finite dimensional, or (**): X E (Rf) n (R) n (H), then conditions
( I ) through (5) are equivalent.

Proof (1) = (2). This follows immediately from Corollary 3.10.

(2)=(3). For FEremote(X*), let a;=Cent(F;AJ and let a=
Cent(F; A). By condition (2), lim; II a; - a II = 0, so that by Lemma 3.1,

lim rad(F; AJ = lim r(F, oJ = r(F, 0) = rad(F; A).
I, ;

(3)=(4). Assuming (3), we have for each yEX*,

lim d(y, A;) = lim rad( {y}; A;) = rad({ y}; A) = d(y, A).
/. I,

If X is finite dimensional, then x* is finite dimensional (and reflexive l,
and a subbase for TM' = TM on X* consists of all sets of the form V where
V is an open subset of X* and (KC

) +- where K is a compact subset of X*.
Thus, TM' reduces to the Fell topology [8, 19], also called the topology
of closed convergence [26J, induced by the norm topology on X*. The
equivalence of conditions (1), (4), and (5) follows immediately from
[8, Lemma 2.1 and Theorem 3.1], with only the assumption (R*). Thus, in
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the finite dimensional case. conditions (1,1 through (5) arc equivalent, only
assuming (R*).

Finally. assume X E (Rj) I R) (1/). Tu estahlish the clluivalcncc oj

conditions I I ) through (5). we prove (5)""" ( 1) .~ (41 => (5 i. Much of the
discussion that follows is adapted from Sonntag [37J

(5) = (1) Suppose A E '" for some norm open subset V 01 X*
Choose I E A" r. Since 1= P( I .. 1) = lim. Pi 1. A;). we have A; (, I #
eventually. I.c. A, E I' cvcntually. Ncxt. let I\. bc a I\*-compact subset of
X* disjoint from .1. To prove that A IS diSJoint from I\. eventually. it

would suffice to prove that if /1 n I\. .j. frequently. then An K *" To
this cnd. assume <A /I> is a suhnet 01 .1, such thaI for each JI.

A I' n Ki f)· For each index II. choosc \ !I1.1 ,. K. Bv the weak *-
compactncss of K by passing to a subnet. we may assume I" IS

\r*-convergent to some point Ie K. We show II.
For each index II. let {/,.~- PI I. A" i. By the fundamental dual charac­

terization of best approximations (sec, e.g .. [2\ Section 22] or [37.111.9) i
for each II, we have (.I I (r (/,,). I" 1/" () Therefore.

o.

which. hy the definition of the duality mapping, yields

1#)

By assumption (5), I P( .1', A) = lim!, I {/", and sincc.l I is norm norm
continuous, we have liml,.I \(.1' {/I')'=·.I \1 P(l.. l)I. Furthermore.
since y = lr*-lim .1'1' we obtain liml,(.1 I (I -- il,,), .1',1 .I' >= n. Taking thc
limit in Eq. ( # ) above, we get I P( r. A) ,,:;. n. We conclude that lEI

must hold, so that A n K"# 0. Thus. A = T \l.-lim A •.

(I) = (4). This is a special case of Lemma 3.3.

(4)=(5). For each index i.,lct(=d(·.I,)C i2 and let/=d(·.A)C 2.
As above. let U; = P(r. AJ. Under assumption (**). by a theorem of
Sonntag [37, IlL 10], the functions ( and / havc unique subgradients at r.
i.e., are Gateaux differentiable at y. and their derivatives at .I' are given by

1:1.)')=.1 I(l-U;) (I.e 11)

1'(.1') =.1 1(.1' -- P(r, A)).

In particular, for each: E ..r*. we have

(i) /,(:»((.1')+(.1 I(l-a,).: I)

(ii) /(:)?/lr)+(.1 l(r-P(r,A)). .>-r).
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For simplicity, set X,=J 1(.1'~(/,) and x=J 1(.1'-1'(.1', A)). Since the
duality mapping is norm preserving, we have by condition (4)

(iii) lim,II\, lim,II.1' ([,II = lim/d(y,A;) = 0'(.1',.'1) =

.1' - P( l', A) II = II x I.

We claim that lim, II x, -\ II = O. [t suffices to show that each subnet
(XI'> of (\,> has in turn a subnet (XII> satisfying lim l ! II\II-xll =0. By
reflexivity and (iii), the net (\1' >, which is norm bounded eventually, must
have a weakly convergent subnet (>:/:>' [n view of (i), (ii), and assumption
(4), the Gateaux differentiability f ensures that the (weak) limit of this
subnet can only be x. Also by (iii), we have lim l ! XI! I = Ilx I. [t now
follows that lim II 11\11 -.\ II = 0 because X E (H), establishing the claim.

Since we now know that lim; X;- X 'I = 0, the norm norm bicontinuity
of the duality map J ensures that

lim I! 1'(.1', A, ) - P(.1', A) II = lim (.1' - ([ I) - (.1' - P( \', A))

=Iim Ilx;-xll =0.
;

Thus (5) follows from (4), completing the proof of the equivalence of
conditions (I ) through (5) in case (**). I

COROI.LARY 3.13. Le/ X he (/ normei! space. Slippose either (*): X is

jini/e dimensional and in (R), or (**): X E (F) n (F*). Then j(lr anI'/

(A ,>, 1 in CC(X), thef(I/lOll'ing arc e(llIimlent:

(II A = TM-lim A,.:

f 2) lim , Cent(F: A,) = Cent(F: A), j(lr 1'1'1'1'.1' FE remote(X):

(3) lim; rad( F: A I) = rad( F: A), j(lr 1'1'1'1'.1' FE remoter Xl:

(4) lim; d(x, A I.) = d(.>:, A), j(i/' 1'1'1'1'.1' .\ E X:

(5) lim; 1'(>:, A,) = P(x, A), j(ir 1'1'1'1'1' X E X.

A number of historical remarks arc in order. The equivalence of
statements (I), (4), and (5) in Corollary 3.13 for a seqllence <A!1 > in
CC(X), for X a Hilbert space, is due to Attouch [5]. For XE(F)n(F*),

the equivalence of (1), (4), and (5), again for sequences, is established in
the thesis of Sonntag [37], and we are in essence building on his ideas. An
alternative proof in this setting based on Moreau Yosida approximation
can be found in [6], and a third proof is given in [38].

4. BAIRE CATEGOR Y RESULTS rOR CLOSED CO"lVFX SETS

By [9, Theorem 4.3J, when X is separable and reflexive., CC(X)
equipped with the Mosco topology T\1 is a Polish space (second countable
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and completely metrizable) and therefore, the product space CB(X) x
CC(X) is complete if CB(X) is equipped with the topology 'H [26, p.45J
(note: <CB(X), 'H) is not separable unless X is finite dimensional). Since
the product so topologized is a Baire space, it is meaningful to ask whether
the following generic statement is true in the sense of Baire category: is
Cent(F; A) single-valued for most (F, A) in CB(X) x CC(X)? From the
point of view of optimization theory, this is equivalent to asking: does the
convex programming problem

minimize r(x, F)

subject to x E A

have a unique solution for most problems (F, A)? The following example
shows that the answer is negative. In fact, the set of problems with unique
solutions need not even be dense in CB(X) x CC(X).

EXAMPLE. Let X = R2
, equipped with the box norm. For each (:x I' :(2) E

R2
, let V(:x I ,:X 2 )= {WI' /32): 11(/31, /32)- (:x" :(2)11 < 1o}· Then

.91 == V(l, I) 1\ V( I, - 1) 1\ V( - 1, I) 1\ V( - I, - I )

is 'M-open in CC(X), and if A E .91, then A:=> [ -~, D x [ -~, n Now
let Fa = {(O, 1), (0, - 1)}. We claim that for each (F, A) in the open
set {F: H(F, Fo) < 1o} x .91, Cent(F; A) contains mort than one point.
To see this, fix F with H(F, Fo) < io. If p = max {/32: (f3 I' (3 2) E F} and
0-=min{/32: WI' /32)EF}, then

((x, (p+0-)/2): -~~x~~}cCent(F;X).

Thus, for each A E .91,

((x, (p + 0-)/2): -~~x ~~} c Cent(F; X) 1\ A c Cent(F; A).

What goes wrong here is that we allow constraint sets A to intersect
Cent( F; X), the ahsolute center of F. We intend to show that our generic
statement is true, provided we consider just those (F, A) for which
A 1\ Cent(F; X) = 0. In the sequel, for a real function f on X and :x E R,
denote by sub(f; :x) the suhlevel set {x E X:f(x) ~:x}. The following facts,
which we record as a lemma, are obvious and well known.

LEMMA 4.1. Let f he a continuous convex function on a normed space X
For each real :x, sub(f;:x) is a closed convex set, andf(Jr each :x> inf I

int sub(f;:x) = (x E x:f(x) <:x:.
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LEMMA 4.2. Let X he a separahle reflexive space. Suppose CB(X) is
equipped with the topology T /I and CC( X) is equipped with the topology TM.

Then the suhset Q=={(F,A):Cent(F;X)nA=0} of CB(X)ixCC(X),
equipped with the relative topology, is completelv metrizahle.

Proof We observe that

Q = {(F, A) E CB(X) x CC(X): rad(F; A) - rad(F; X) > O}.

By Lemma 3.4, the map (F, A) ---> rad(F; A) - rad(F; X) is continuous on
(CB(X), TII)X (CC(X),T M ). As a result, Q is open in the product, and
by a celebrated theorem of Alexandroff [41, p.179J, any open subspace of
a completely metrizable space is itself completely metrizable. I

The key ingredient in the proof of our generic theorem is a continuity
theorem of Christensen [14 J, which may be viewed as a variant of the
classical Kuratowski-Fort theorem [20]. Retaining the terminology of
[9J, we call a multifunction r from a topological space T to a normed
space X almost lower semicontinuous (alsc) at tIE T if there exists x I E E( t I)
such that for each £ > 0, there exists a neighborhood V, of t 1 such that for
each tE V" we have T(t)n(x] +£U)#-0. This property, considered first
by Christensen under the name Kenderov continuity, agrees for compact
valued multifunctions with a somewhat weaker continuity property intro­
duced by Deutsch and Kenderov [16]. For our purposes, the following
weakened form of Christensen's theorem suffices.

CHRISTENSEN'S THEOREM. Let T he a complete metric space and let X be
a Banach space. Suppose r is a weakly usco map from T to X. Then there
exists a dense and G6 subset G of T such that r is alsc at each tEo G.

THEOREM 4.3. Let X be a separahle reflexive space. Suppose CB(X) is
equipped with the topology Til' CC( X) is equipped with the topology T M, and
the set Q={(E,A)ECB(X)xCC(X):Cent(E;X)nA=0} is equipped
with the relative topology of CB(X) x CC(X). Then there exists a dense and
G,j suhset Q o ofQ such that for each (E, A) in Qo, CentrE; A) is a singleton.

Proof By Corollary 3.7, (F,A)--->Cent(F;A) is weakly usco on
CB(X) x CC(X), and thus on Q. By Christensen's theorem there is a dense
and G,j subset Qu of Q such that at each (F, A) in Q u, the relative center
map is alsc. Fix (Eo, Au) EQu. We claim that Cent(Fo, Au) is a singleton.

As-sume the contrary, and let XI ECent(Fu; Au) be as guaranteed by the
definition of almost lower semicontinuity. Let X o be a different point of
Cent(Fo; An), and set £ = II XI - X n 11/2. By almost lower semicontinuity of
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the relative center map, there exists b > 0, open subsets V I' V2' ... , Vii of X,
and a weakly compact subset K of X such that

Ii

2,=: n V, n(Ke
),

I I

is a neighborhood of Ao, and whenever H(F, Fo)< b and A E r, then
Cent(F; A) n (XI + I:U) # 0. Let CJ. = rad(Fo; Ao). By the definition of Q, we
have et.>rad(Fo;X). Applying Lemma 4.1, sub(r(Fo,·);et.) is a closed
convex set with nonempty interior {x EX: r( Fo, x) < :x], and A 0 does not
meet the interior of sub(r(F(b . ); CI.). By the separation theorem, there exists
.I' # 0* in 1'* such that

sup «x, .1'): xESub(r(Fo,');:X)::S; {):S; inf{ (\, y): XE Ao}·

Since Cent(Fo; Ao) = sub(r(Fo, .); :x) n Ao. we actually have <x, .1') = {) for
each xECent(Fo, Ao). By reflexivity of X, there exists UES(X) such that
(u, .1') = II .I'll· Choose ai E Ao n Vi for i = 1,2..... n. Since K is weakly
compact and each Vi is norm open, and conv {xo, .\ I. a I. a2 • ... , ali} n
K = 0, there exists ;, > 0 such that a i + ;.u E V, for each i:S; n, and

A I=: conv {xo. XI + ;.u, al + ;.u. .... ali + /u] n K = 0.

Thus, A IE 2,. Now rad(Fo; A I):S; r(Fo, xo) =:X. Also. if X E A I and x # Xo,
then there exists p in conv {x 1 + ;.11, a I + ;.u• .... ali + ;.u] and p E (0, 1] such
that X = pp + (1 - p) Xo. As a result,

<x,y)=p<p,y)+(l-p)(xo,y),?-p{)+pJ.11 .I'll +(l-p){l>f3.

and therefore r(Fo, x) >:X. Thus, Xo is the unique minimizer of r(Fo, .) in
A I so that Cent(Fo; Ad = {xo}· Therefore, Cent(Fo; Ad n (XI + c;U) = 0,
which contradicts the almost lower semicontinuity of the map (F, A) ->

Cent(F; A) at (Fa, Ao), and completes the proof. I
The proof of Theorem 4.3 actually establishes the following single

variable result, which is perhaps more attractive from the point of view of
approximation theory than is Theorem 4.3 (but perhaps less attractive from
the point of view of optimization).

THEOREM 4.4. Let X he a separahle reflexive space and suppose CC(X)
is equipped with the topology TM . Then for each FE CB(X), Cent(F; A) is
single valued for most A E CC(X) for which An Cent(F; X) = 0.

Note that when F is a singleton {x}, Cent( {x}; X) = {x}, and if A meets
{:r}, then already Cent( {x}; A) is single valued. Thus, Theorem 4.4 says, in
particular, that for each x EX, Pix, A) is a singleton for most A E CC(X),
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equipped with the Mosco topology. This fact was not formally observed in
[9]. As is well known, if X = R 2 with the box norm, the statement is not
true if we equip CC(X) with the Hausdorff metric topology.

5. THE DISTAL TOPOLOGY

Let X be a normed space. As we mentioned in Section 2, the Wijsman
topology ,won CC(X) is the weakest topology for which the functionals
A ~ d(x, A) are continuous on CC(X), for each x E X. When X is reflexive,
this topology agrees with the usually stronger ball topology '8 [7J, which
has as a subbase all sets of the form W - where W is an open ball and
(Be) +, where B is a closed ball [9, Theorem 3.5]. This fact remains valid
in a dual space X*, provided we work with C*C(X*) rather than with all
of CC(X*). It is natural to inquire whether the analogous weak topology
on C*C(X*), induced now by maps of the form A ~ rad(F; A )., admits a
concrete presentation as a "hit-and-miss" topology as well. We resolve this
question immediately.

DEFINITION. Let X be a normed space. The distal topology '0 on CC(X)
is the weakest topology on CC(X) such that for each closed and bounded
subset F of X, A ~ rad(F; A) is continuous on CC(X).

By the definition of the distal topology, for each x E X, A ~ rad( {x} ; A ),
i.e., A ~ d(x, A), is 'D-continuous on CC(X), whence ,0::::J Two

THEOREM 5.1. Let X* be a dual normed space. The distal topology, D on
C*C(X*) is generated by all sets of theform V - where V is norm open, and
(B C )+ where B is an intersection of a finite family of balls of a common
radius.

Proof Let, be the topology on C*C(X*) generated by all sets of the
form V -, where V is norm open, and (B C

) + where B is an intersection of
a finite family of balls of a common radius. We first show that for each
fixed closed and bounded subset F of X that A ~ rad(F; A) is ,-continuous.
Fix AoEC*C(X*). Let £>0 and aoECent(F;A o) be arbitrary, and set
V = {y: II y - aoll < t}. Suppose A E V-; then there exists a E A n
{y: II .v-aoll <£}. By Lemma 3.1,

rad(F; A) ~ rtF, a) < rtF, ao) + I: = rad(F; A o)+ 1:.

This proves ,-upper semicontinuity of A ~ rad(F; A) at A = A o. Lower
semicontinuity at A o obviously occurs if rad(F; A o) = rad(F; X*).
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Otherwise, let x be any scalar strictly between rad(F; X*) and rad(F; Ao).
We claim that there is a finite subset E of F such that

Aon( n (y+xU*))=0.
\ l' ( F I

If not, [A o n (y + xU*): yE F l would be a family of w*-compact subsets of
X* with the finite intersection property. Thus, nIE I Ao n (y +xU*) would
be nonempty, and choosing a point p in the intersection, we obtain

rad(F; Ao)":;; r(F, p) = infU3: p E Y + /W* for each y E F}":;; x.

This contradicts rad(F; Ao) > x, establishing the claim. For such a finite set
E, set B=n,ct.(Y+xU*). By the definition of the toplogy" (B C

)' is
,-open. Clearly, AoE(BC )+, and if AE(BC )+, we have rad(F;A);:O:
rad(E; A) > x. This establishes ,-lower semicontinuity of A -> rad(F; A),
and ,-continuity now follows. Thus, ,:::J 'I)'

It remains to show that, C 'I)' Since 'w C '[), we have V E ,[) for each
norm open subset V of X*. Suppose B is a finite intersection of balls, say

\' c F

where E is a finite subset of X* and x > O. Now by the definition of the
distal topology, {A E C*C(X*): rad(E; A) > x) is Tn-open. But this is
precisely (B C

) t, whence the distal topology contains ,. Thus, ,=,D' I
By the last theorem, it is clear that in a dual normed space, the dual

Mosco topology 'M' includes the distal topology. As a result, we recover
once again Lemma 3.3. At this point, we find it convenient to list the
relationships between the many topologies we have introduced on
C*C(X*): The Hausdorff metric topology 'H' the dual Mosco topology
'M" the Wisjman topology 'w, and the distal topology '[), the Fell
topology, F, and the ball topology, B' The reader should easily be able to
verify the inclusions below, mimicing arguments valid in the reflexive case
[9, Theorem 3.5].

THEOREM 5.2. Let X* be a dual nomled space. On C*C(X*) we have

'FC'W='BC,[)C'M,C'H'

IIXE(F)n(F*), then 'W='ll='I)='M', and ilX is finite dimensional,
then 'F = 'W = 'B = ,[) = 'M"

We next show that for a separable dual normed space X*, the distal
topology on C*C(X*) is metrizable. To do this, it is sufficient to show, by
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the Urysohn metrization theorem [41, p.166], that the topology is
Hausdorff, second countable, and regular.

THEOREM 5.3. Let X* be a separable dual normed space. Then the distal
top0 logJ' 'D on C*C(X*) is second countable and metrizable.

Proof Suppose E is a countable dense subset of X*. We claim that all
sets of the form ({ y: II Y - Yo II < Ci} ) where Yo E E and a is rational, and
(Be) +, where B is a finite intersection of balls with centers in E, each of the
same rational radius, is a (countable) subbase for, D' First, suppose V is
a norm open subset of X* and A oE V-. Choose aoE V n A 0 and t: > 0
such that {y: II y - ao II < t:} c V. There exists eo E E and a positive rational
6 such that aoE{y:lly-eoll<e5}c{y:lly-aoll<t:}. As a result,
{y: II y~eoll <6} is a 'D-neighborhood of A o contained in V.

Next, let {YhY2'Y3' ... ,Ym} be a finite subset of X*, and leta be a
positive scalar such that B=ni~m(Yi+aU*) is nonempty. Suppose
AoE(B')+. Evidently, rad({Yt,.l'2, ...,y",};A o»a; so, there exists
nEZ' such that a+3In<rad({Yt,Y2, ... ,Ym};Ao). Choose for each
iE{I,2, ... ,m} a point eiEE such that Ile i -Yill<lln. Also, let fJ be a
rational with a+lln<fJ<a+21n. Then BI=ni~",(ei+fJU)contains B.
and by Lemma 3.1

Thus, by the choice of the index n,

rad( {e t , e2 , ... , e",); Ao);:: a + 31n - lin = a + 21n > fJ.

As a result, A 0 E (B~) + c (Be) +. The existence of a countable subbase, and
thus a countable base, for, D is established.

It remains to show that'D is Hausdorff and regular. The proof that the
Mosco topology 'M is Hausdorff shows equally well that'D is Hausdorff
[9, Theorem 3.4]. Complete regularity of 'D follows from the general prin­
ciple that a weak topology on a set determined by a family of real valued
functions is automatically completely regular, because such a topology
admits a compatible uniformity [41, p. 256]. Specifically, if T is a set and
{I: i E I} is a family of real valued functions defined on T, then a base for
a uniformity on T compatible with the weakest topology on T with respect
to which each}; is continuous consists of all subsets of TxT of the form

where 10 is a finite subset of I and t: is a positive real. I
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Let X be a reflexive Banach space. In closing, we exhibit Ii curious
duality between the distal and Mosco topologies on CC(X) which might
lead us to alternatively call the Mosco topology on CC(X) the proximal
topology. As a point of departure, note that "closed and bounded" may be
replaced by "weakly compact and convex" in the above definition of the
distal topology for a reflexive space, because for each closed and bounded
subset F of X, we have rad(F; .) = rad(cl conv F; .). Thus, for X reflexive,
the distal topology is the weakest topology on CC(X) such that for each
weakly compact convex set K, the functional

A ---+ inf { a : A meets DK (.\ + aU) }

is continuous on CC(X). The Mosco topology admits a dual description,
replacing intersection by union. What is first required is a totally convex
description of the Mosco topology, which should have been presented in
[9], but was not.

LEMMA 5.4. Let X he a reflexive Banach space. The Mosco topology r M

on CC(X) is generated hy aU sets of the form W where W is an open ba//
in X, and (KC )+ where K is a weakly compact convex subset ot' x.

Proof: It suffices to show that each subbasic open set in the standard
description of the Mosco topology is open in the topology T generated by
all sets of the form W where W is an open ball in X, and (KC )+ where
K is a weakly compact and convex. Suppose A E V where V is an open
subset of X. Choose ao E A n V and i: > 0 with ao + i:U c V. Then
W = {x: II x - Xo II < E} is open ball, and A E W- c V -, This shows that
V E r. On the other hand, suppose A n K = 0 where K is weakly
compact, but not necessarily convex. By the separation theorem, for each
k E K there exists Yk E X* and ak E R such that

inf,E A (x, l'k) >ak > (k, Yk)'

Since K c Uk E K {x EX: (x, Yk) < ad and K is weakly compact, there
exists a finite subset Fof K with Kc UhF {XEX: (x,Yk) :S:ak}' For each
kEF, let Hk = {x E X: (x, Yk):S: ak }. Since K = UkE F (K n Hd, we have

Kc U clconv(KnHd,
kEF

Since K is norm bounded, cl conv(K n H k ) is a weakly compact convex set
for each kEF. Also, An H k = 0 implies An [cl conv(K n Hd] = 0. As a
result,

AE n (c1conv(KnHk l]C) , c(KC)+,
k F F

This proves that (KC
) + is r-open, and r = T M , I
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THEOREM 5.5. Let X be a reflexive Banach space. The Mosco topology
T M is the weakest topology on CC( X) such that for each weakly compact
convex set K, the functional

A -> inf fcc A meets U. (x + au)}
YE k

is continuous on CC( X).

Prool Let T be the weak topology on CC(X) so described. For each
weakly compact convex set K and each closed convex set A, we have

inf{a: A meets U. (x + Y.U)} = inf{ II a~ k II: aE A, k E K}.
\-E A

Now it is known that the Mosco topology is the weakest one on CC(X)
such that A -> inf{ II a ~ k II :a E A, k E K} is continuous for each weakly
compact set K [9, Theorem 3.3]. Thus, T C T M' But if K is a fixed weakly
compact convex set, then

[A E CC(X): inf{ II a- k II: ([EA, kE K} > O} = (KC )+.

Thus, T must contain (KC
) I for each weakly compact convex subset K of

X. Also, letting K run over the singleton subsets of X, we see that T must
contain Tw and thus V for each norm open set V. By the Lemma 5.4,

T = TM' I
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